WHAT IS CLAIMED IS:

1. A compound of structural formula I:

5 or a pharmaceutically acceptable salt thereof; wherein

X is selected from the group consisting of

- (1) C_{1-8} alkyl,
- 10 (2) $-(CH_2)_nC_3$ -8 cycloalkyl,
 - (3) $-(CH_2)_n$ -phenyl,
 - (4) $-(CH_2)_n$ -naphthyl,
 - (5) $-(CH_2)_n$ -heteroaryl,
 - (6) -(CH₂)_nheterocycloalkyl,
- 15 $(7) (CH_2)_n C(R^5)(R^6)(R^7),$
 - (8) $-(CH_2)_nC\equiv N$,
 - (9) $-(CH_2)_nCON(R^8)_2$,
 - (10) $-(CH_2)_nCO_2R^8$,
 - (11) $-(CH_2)_nCOR^8$,
- 20 (12) $-(CH_2)_nNR^8C(O)R^8$,
 - (13) $-(CH_2)_nNR^8CO_2R^8$,
 - (14) $-(CH_2)_nNR^8C(O)N(R^8)_2$,
 - (15) $-(CH_2)_nNR^8SO_2R^8$,
 - (16) $-(CH_2)_nS(O)_pR^8$,
- 25 (17) - $(CH_2)_nSO_2N(R^8)_2$,
 - (18) $-(CH_2)_nOR^8$,
 - (19) $-(CH_2)_nOC(O)R^8$,
 - (20) $-(CH_2)_nOC(O)OR^8$,
 - (21) $-(CH_2)_nOC(O)N(R^8)_2$,
- 30 (22) $-(CH_2)_nN(R^8)_2$, and

15

20

(23) $-(CH_2)_nNR^8SO_2N(R^8)_2$,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl, cycloalkyl, and heterocycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein any methylene (CH₂) in X is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl;

R1 is selected from the group consisting of

- (1) hydrogen,
- 10 (2) amidino,
 - (3) C₁₋₄ alkyliminoyl,
 - (4) C_{1-10} alkyl,
 - (5) $-(CH_2)_n$ -C₃₋₇ cycloalkyl,
 - (6) $-(CH_2)_n$ -phenyl,
 - (7) $-(CH_2)_n$ -naphthyl, and
 - (8) $-(CH_2)_n$ -heteroaryl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo;

R² is selected from the group consisting of

- (1) phenyl,
- (2) naphthyl, and
- (3) heteroaryl,
- wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³;

each R³ is independently selected from the group consisting of

- (1) C₁₋₈ alkyl,
- 30 (2) C₂₋₈ alkenyl,
 - (3) $-(CH_2)_n$ -phenyl,
 - (4) $-(CH_2)_n$ -naphthyl,
 - (5) $-(CH_2)_n$ -heteroaryl,
 - (6) $-(CH_2)_nC_2-7$ heterocycloalkyl,
- 35 (7) $-(CH_2)_nC_3-7$ cycloalkyl,

```
(8)
                           halogen,
                           OR^9,
                 (9)
                 (10)
                           -(CH<sub>2</sub>)<sub>n</sub>C(O)R<sup>9</sup>,
                           -(CH_2)_nOC(O)R^9,
                 (11)
 5
                 (12)
                           -(CH_2)_nC(O)OR^9,
                 (13)
                           -(CH<sub>2</sub>)<sub>n</sub>C≡N,
                 (14)
                           NO<sub>2</sub>,
                           -(CH_2)_nN(R^9)_2,
                 (15)
                           -(CH_2)_nC(O)N(R^9)_2,
                 (16)
                           -(CH_2)_nNR^9C(O)R^9,
10
                 (17)
                           -(CH_2)_nNR^9C(O)OR^9,
                 (18)
                           -(CH<sub>2</sub>)<sub>n</sub>NR<sup>9</sup>C(O)-heteroaryl,
                 (19)
                          -(CH_2)_nNR^9C(O)N(R^9)_2,
                 (20)
                          -(CH_2)_nC(O)NR^9N(R^9)_2,
                 (21)
                           -(CH_2)_nC(O)NR^9NR^9C(O)R^9,
15
                 (22)
                          -(CH_2)_nNR^9S(O)_pR^9,
                 (23)
                           -(CH_2)_nS(O)_pN(R^9)_2,
                 (24)
                           -(CH_2)_nS(O)_pR^9,
                 (25)
                           O(CH_2)_nC(O)N(R^9)_2,
                 (26)
20
                 (27)
                           CF<sub>3</sub>,
                 (28)
                           CH<sub>2</sub>CF<sub>3</sub>,
                 (29)
                           OCF<sub>3</sub>, and
                 (30)
                           OCH<sub>2</sub>CF<sub>3</sub>,
```

wherein alkenyl, phenyl, naphthyl, heteroaryl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, and wherein any alkyl, cycloalkyl, heterocycloalkyl, and methylene (CH₂) carbon atom in R^3 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, oxo, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, or two R^3 substituents on the same carbon atom are taken together with the carbon atom to form a cyclopropyl group;

30

25

each R4 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) $-(CH_2)_nC_{3-6}$ cycloalkyl,
- 35 (4) $-(CH_2)_n$ -aryl,

25

- (5) hydroxy,
- (6) halogen, and
- (7) amino;
- 5 R⁵ is independently selected from the group consisting of
 - (1) hydrogen,
 - (2) C_{1-8} alkyl,
 - (3) C_{2-8} alkenyl,
 - (4) C_{2-8} alkynyl,
- 10 (5) C₁₋₈ alkoxy,
 - (6) $-(CH_2)_nC_3-7$ cycloalkyl,
 - (7) $-(CH_2)_nC_{2-7}$ heterocycloalkyl,
 - (8) $-(CH_2)_n$ -phenyl,
 - (9) $-(CH_2)_n$ -naphthyl,
- 15 (10) -(CH₂)_n-heteroaryl, and
 - (11) $-(CH_2)_nC_3-7$ bicycloalkyl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein any methylene (CH₂) in R⁵ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl;

R⁶ is selected from the group consisting of

- (1) hydrogen, and
 - (2) C₁₋₈ alkyl;

R⁷ is selected from the group consisting of

- (1) $-(CH_2)_nN(R^8)_2$,
- 30 (2) $-(CH_2)_nNR^8C(O)R^8$,
 - (3) $-(CH_2)_nNR^8C(O)OR^8$,
 - (4) $-(CH_2)_nNR^8C(O)N(R^8)_2$,
 - (5) $-(CH_2)_nNR^8S(O)R^8$,
 - (6) $-(CH_2)_nNR^8S(O)_2R^8$, and
- 35 $(7) (CH_2)_n NR^8 S(O)_2 N(R^8)_2$

20

30

35

wherein any methylene (CH₂) in R^7 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R^8 substituents together with the carbon, nitrogen or sulfur atom to which they are attached form a 5, 6, or 7-membered saturated or unsaturated nitrogen containing ring optionally substituted with one to three groups independently selected from C_{1-8} alkyl and oxo;

each R8 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₈ alkyl,
- 10 (3) C₂₋₈ alkenyl,
 - (4) $-(CH_2)_nC_3-7$ cycloalkyl,
 - (5) -(CH₂)_nC₂-7 heterocycloalkyl,
 - (6) -(CH₂)_nC₃-7 bicycloalkyl,
 - (7) $-(CH_2)_n$ -phenyl,
- 15 (8) $-(CH_2)_n$ -naphthyl, and
 - (9) $-(CH_2)_n$ -heteroaryl,

wherein alkyl, alkenyl, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and wherein any methylene (CH2) in R³ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C¹-4 alkyl, or two R³ groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and

25 -NC₁₋₄ alkyl;

each R⁹ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₈ alkyl,
- (3) phenyl,
 - (4) heteroaryl,
 - (5) -(CH₂)_n heterocycloalkyl, and
 - (6) C₃-6 cycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy,

and C₁₋₄ alkoxy, or two R⁹ groups together with the atom to which they are attached form a 4-to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

```
r is 1 or 2;

5 s is 0, 1, or 2;

m is 0, 1, 2, 3, or 4;

n is 0, 1, 2, 3, or 4; and

p is 0, 1, or 2.
```

- 2. The compound of Claim 1 wherein R¹ is selected from the group consisting of hydrogen, C₁₋₆ alkyl, -(CH₂)₀₋₁C₃₋₆ cycloalkyl, and -(CH₂)₀₋₁-phenyl, wherein phenyl is unsubstituted or substituted with one to three groups independently selected from R³, and alkyl and cycloalkyl are optionally substituted with one to three groups independently selected from R³ and oxo; and pharmaceutically acceptable salts thereof.
 - 3. The compound of Claim 1 wherein R² is phenyl or thienyl, optionally substituted with one to three groups independently selected from R³; and pharmaceutically acceptable salts thereof.
 - 4. The compound of Claim 3 wherein R² is phenyl optionally substituted with one to three groups independently selected from R³; and pharmaceutically acceptable salts thereof.
- 5. The compound of Claim 1 wherein each R⁴ is independently selected from the group consisting of hydrogen, halogen, or hydroxy; and pharmaceutically acceptable salts thereof.
 - 6. The compound of Claim 1 wherein X is selected from the group consisting

30 of

- (1) C_{1-8} alkyl,
- (2) $-(CH_2)_nC_3$ -8 cycloalkyl,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -heteroaryl,
- 35 (5) -(CH₂)_nheterocycloalkyl, and

10

15

25

30

(6) $-(CH_2)_nC(R^5)(R^6)(R^7)$,

wherein phenyl and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl, cycloalkyl, and heterocycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein any methylene (CH2) in X is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl; and pharmaceutically acceptable salts thereof.

- 7. The compound of Claim 6 wherein X is phenyl or heteroaryl optionally substituted with one to three groups independently selected from R³; and pharmaceutically acceptable salts thereof.
- 8. The compound of Claim 7 wherein X is phenyl optionally substituted with one to three groups independently selected from R³; and pharmaceutically acceptable salts thereof.
- 9. The compound of Claim 6 wherein X is $-(CH_2)_nC(R^5)(R^6)(R^7)$; and pharmaceutically acceptable salts thereof.
 - 10. The compound of Claim 9 wherein
- 20 n is 0;

R⁵ is selected from the group consisting of

- (1) C_{1-8} alkyl,
- (2) $-(CH_2)_nC_3-7$ cycloalkyl,
- (3) $-(CH_2)_nC_2-7$ heterocycloalkyl,
- (4) $-(CH_2)_n$ -phenyl, and
- (5) $-(CH_2)_n$ -heteroaryl,

wherein phenyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and alkyl, cycloalkyl and heterocycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein any methylene (CH₂) in R⁵ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl; and

R6 is hydrogen; and

pharmaceutically acceptable salts thereof.

11. The compound of Claim 1 wherein r is 1.

25

- 12. The compound of Claim 1 wherein r is 2.
- 13. The compound of Claim 1 wherein R² is phenyl substituted with one to three groups independently selected from R³.
 - 14. The compound of Claim 1 of structural formula IIa or IIb of the indicated *trans* relative stereochemical configuration:

or a pharmaceutically acceptable salt thereof; wherein

X is selected from the group consisting of

- (1) C_{1-8} alkyl,
- (2) $-(CH_2)_nC_3$ -8 cycloalkyl,
- (3) $-(CH_2)_n$ -phenyl,
- (4) $-(CH_2)_n$ -heteroaryl,
- (5) -(CH₂)_nheterocycloalkyl, and
- (6) $-(CH_2)_nC(R^5)(R^6)(R^7)$,
- wherein phenyl and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and alkyl, cycloalkyl, and heterocycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein any methylene (CH₂) in X is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl;

 R^1 is selected from the group consisting of hydrogen, amidino, C_{1-4} alkyliminoyl, C_{1-6} alkyl, C_{5-6} cycloalkyl, -(CH₂)₀₋₁ phenyl, and -(CH₂)₀₋₁ heteroaryl, wherein phenyl and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl

1291Y

and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo;

R2 is phenyl or thienyl, optionally substituted with one to three groups independently selected from R3;

each R³ is independently selected from the group consisting of

- (1) C₁₋₈ alkyl,
- (2) C₂₋₈ alkenyl,
- 10 (3) $-(CH_2)_n$ -phenyl,
 - (4) $-(CH_2)_n$ -naphthyl,
 - (5) $-(CH_2)_n$ -heteroaryl,
 - (6) $-(CH_2)_nC_2-7$ heterocycloalkyl,
 - (7) $-(CH_2)_nC_3-7$ cycloalkyl,
- 15 (8) halogen,
 - (9) OR^9 ,
 - (10) $-(CH_2)_nC(O)R^9$,
 - (11) $-(CH_2)_nOC(O)R^9$,
 - (12) $-(CH_2)_nC(O)OR^9$,
- 20 (13) $-(CH_2)_n C \equiv N$,
 - (14) NO₂,
 - (15) $-(CH_2)_nN(R^9)_2$,
 - (16) $-(CH_2)_nC(O)N(R^9)_2$,
 - (17) $-(CH_2)_nNR^9C(O)R^9$,
- 25 (18) -(CH₂)_nNR⁹C(O)OR⁹,
 - (19) $-(CH_2)_nNR^9C(O)$ -heteroaryl,
 - (20) $-(CH_2)_nNR^9C(O)N(R^9)_2$,
 - (21) $-(CH_2)_nC(O)NR^9N(R^9)_2$,
 - (22) $-(CH_2)_nC(O)NR^9NR^9C(O)R^9$,
- 30 (23) $-(CH_2)_nNR^9S(O)_pR^9$,
 - (24) $-(CH_2)_nS(O)_pN(R^9)_2$,
 - (25) $-(CH_2)_nS(O)_pR^9$,
 - (26) $O(CH_2)_nC(O)N(R^9)_2$,
 - (27) CF₃,
- 35 (28) CH₂CF₃,

25

- (29) OCF3, and
- (30) OCH₂CF₃,

wherein alkenyl, phenyl, naphthyl, heteroaryl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₄ alkyl, trifluoromethyl, and C₁₋₄ alkoxy, and wherein any alkyl, cycloalkyl, heterocycloalkyl, and methylene (CH₂) carbon atom in R³ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, oxo, C₁₋₄ alkyl, trifluoromethyl, and C₁₋₄ alkoxy, or two R³ substituents on the same carbon atom are taken together with the carbon atom to form a cyclopropyl group;

- each R4 is independently selected from the group consisting of
 - (1) hydrogen,
 - (2) C_{1-8} alkyl,
 - (3) $-(CH_2)_{0-1}C_{3-6}$ cycloalkyl,
 - (4) $-(CH_2)_{0-1}$ -aryl,
- 15 (5) hydroxy,
 - (6) halogen, and
 - (7) amino;

R⁵ is independently selected from the group consisting of

- 20 (1) hydrogen,
 - (2) C_{1-8} alkyl,
 - (3) C_{2-8} alkenyl,
 - (4) C_{2-8} alkynyl,
 - (5) C_{1-8} alkoxy,
 - (6) $-(CH_2)_nC_3-7$ cycloalkyl,
 - (7) $-(CH_2)_nC_2$ -7 heterocycloalkyl,
 - (8) $-(CH_2)_n$ -phenyl,
 - (9) $-(CH_2)_n$ -naphthyl,
 - (10) -(CH₂)_n-heteroaryl, and
- 30 (11) $-(CH_2)_nC_3-7$ bicycloalkyl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein any methylene (CH₂) in R⁵ is

20

35

unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl;

R6 is selected from the group consisting of

- (1) hydrogen, and
 - (2) C₁₋₈ alkyl;

R⁷ is selected from the group consisting of

- (1) $-(CH_2)_nN(R^8)_2$,
- 10 (2) $-(CH_2)_nNR^8C(O)R^8$,
 - (3) $-(CH_2)_nNR^8C(O)OR^8$,
 - (4) $-(CH_2)_nNR^8C(O)N(R^8)_2$,
 - (5) $-(CH_2)_nNR^8S(O)R^8$,
 - (6) $-(CH_2)_nNR^8S(O)_2R^8$, and
- 15 $(7) (CH_2)_n NR^8 S(O)_2 N(R^8)_2$,

wherein any methylene (CH₂) in R^7 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R^8 substituents together with the carbon, nitrogen or sulfur atom to which they are attached form a 5, 6, or 7-membered saturated or unsaturated nitrogen containing ring optionally substituted with one to three groups independently selected from C_{1-8} alkyl and oxo;

each R⁸ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- 25 (3) C₂₋₈ alkenyl,
 - (4) $-(CH_2)_nC_3-7$ cycloalkyl,
 - (5) $-(CH_2)_nC_2-7$ heterocycloalkyl,
 - (6) -(CH₂)_nC₃-7 bicycloalkyl,
 - (7) $-(CH_2)_n$ -phenyl,
- 30 (8) $-(CH_2)_n$ -naphthyl, and
 - (9) $-(CH_2)_n$ -heteroaryl,

wherein alkyl, alkenyl, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R³ and oxo, and wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and wherein any methylene (CH₂) in R⁸ is unsubstituted or

substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl, or two R⁸ groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

5

15

20

each R9 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) phenyl,
- 10 (4) heteroaryl,
 - (5) $-(CH_2)_n$ heterocycloalkyl, and
 - (6) C3-6 cycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy, or two R⁹ groups together with the atom to which they are attached form a 4-to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

r is 1 or 2; s is 0, 1 or 2; m is 0, 1, 2, 3 or 4; n is 0, 1, 2, 3 or 4; and p is 0, 1, or 2.

25 i

15. The compound of Claim 1 of the following structural formula with the indicated *trans* relative stereochemical configuration:

or a pharmaceutically acceptable salt thereof; wherein

X is selected from the group consisting of

- (1) $-(CH_2)_{0-1}$ -phenyl,
- (2) -(CH₂)₀₋₁-heteroaryl, and
- (3) $-(CH_2)_{0-1}C(R^5)(R^6)(R^7)$,
- wherein phenyl and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³, and wherein any methylene (CH₂) in X is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl;
- 10 R¹ is selected from the group consisting of hydrogen, C₁₋₄ alkyl, and -(CH₂)₀₋₁ phenyl;

each R³ is independently selected from the group consisting of

- (1) C_{1-8} alkyl,
- 15 (2) C₂₋₈ alkenyl,
 - (3) $-(CH_2)_{0-1}$ -phenyl,
 - (4) -(CH₂)₀₋₁-naphthyl,
 - (5) $-(CH_2)_{0-1}$ -heteroaryl,
 - (6) -(CH₂)₀₋₁-C₂-7 heterocycloalkyl,
- 20 (7) -(CH₂)₀₋₁-C₃₋₇ cycloalkyl,
 - (8) halogen,
 - (9) OR^9 ,
 - (10) $-(CH_2)_{0-1}-C(O)R^9$,
 - (11) $-(CH_2)_{0-1}-OC(O)R^9$,
- 25 (12) $-(CH_2)_{0-1}-C(O)OR^9$,
 - (13) $-(CH_2)_{0-1}-C\equiv N$,
 - (14) NO₂,
 - (15) $-(CH_2)_{0-1}-N(R^9)_2$,
 - (16) $-(CH_2)_{0-1}-C(O)N(R^9)_2$,
- 30 (17) $-(CH_2)_{0-1}-NR^9C(O)R^9$,
 - (18) $-(CH_2)_{0-1}-NR^9C(O)OR^9$,
 - (19) $-(CH_2)_{0-1}NR^9C(O)$ -heteroaryl,
 - (20) $-(CH_2)_{0-1}NR^9C(O)N(R^9)_2$,
 - (21) $-(CH_2)_{0-1}C(O)NR^9N(R^9)_2$,
- 35 (22) -(CH₂)₀₋₁-C(O)NR⁹NR⁹C(O)R⁹,

15

20

- (23) $-(CH_2)_{0-1}-NR^9S(O)_{1-2}R^9$,
- (24) $-(CH_2)_{0-1}-S(O)_{1-2}N(R^9)_2$,
- (25) $-(CH_2)_{0-1}-S(O)_{0-2}R^9$,
- (26) $O(CH_2)_{0-1}-C(O)N(R^9)_2$,
- 5 (27) CF₃,
 - (28) CH₂CF₃,
 - (29) OCF3, and
 - (30) OCH₂CF₃,

wherein alkenyl, phenyl, naphthyl, heteroaryl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₄ alkyl, trifluoromethyl, and C₁₋₄ alkoxy, and wherein any alkyl, cycloalkyl, heterocycloalkyl, and methylene (CH₂) carbon atom in R³ is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, oxo, C₁₋₄ alkyl, trifluoromethyl, and C₁₋₄ alkoxy, or two R³ substituents on the same carbon atom are taken together with the carbon atom to form a cyclopropyl group;

each R⁴ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₈ alkyl,
- (3) $-(CH_2)_{0-1}-C_{3-6}$ cycloalkyl,
- (4) $-(CH_2)_{0-1}$ -aryl,
- (5) hydroxy,
- (6) halogen, and
- (7) amino;
- 25 R⁵ is independently selected from the group consisting of
 - (1) hydrogen,
 - (2) C_{1-8} alkyl,
 - (3) C_{2-8} alkenyl,
 - (4) C_{2-8} alkynyl,
- 30 (5) C_{1-8} alkoxy,
 - (6) -(CH₂)₀₋₁-C₃-7 cycloalkyl,
 - (7) $-(CH_2)_{0-1}-C_{2-7}$ heterocycloalkyl,
 - (8) $-(CH_2)_{0-1}$ -phenyl,
 - (9) $-(CH_2)_{0-1}$ -naphthyl,
- 35 (10) -(CH₂)₀₋₁-heteroaryl, and

10

25

(11) -(CH₂)₀₋₁-C₃₋₇ bicycloalkyl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl, alkenyl, alkynyl, alkoxy, cycloalky, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein any methylene (CH₂) in R^5 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl;

R6 is selected from the group consisting of

- (1) hydrogen, and
- (2) C_{1-8} alkyl;

R⁷ is selected from the group consisting of

- (1) $-(CH_2)_{0-3}-N(R_8)_{2}$,
- 15 (2) $-(CH_2)_{0-3}-NR^8C(O)R^8$,
 - (3) $-(CH_2)_{0-3}-NR^8C(O)OR^8$,
 - (4) $-(CH_2)_{0-3}-NR^8C(O)N(R^8)_2$,
 - (5) $-(CH_2)_{0-3}-NR_{S}(O)R_{S}$,
 - (6) $-(CH_2)_{0-3}-NR^8S(O)_2R^8$, and
- 20 (7) $-(CH_2)_{0-3}-NR^8S(O)_2N(R^8)_2$,

wherein any methylene (CH₂) in R^7 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R^8 substituents together with the carbon, nitrogen or sulfur atom to which they are attached form a 5, 6, or 7-membered saturated or unsaturated nitrogen containing ring optionally substituted with one to three groups independently selected from C_{1-8} alkyl and oxo;

each R8 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- 30 (3) C₂₋₈ alkenyl,
 - (4) $-(CH_2)_{0-1}-C_{3-7}$ cycloalkyl,
 - (5) -(CH₂)₀₋₁-C₂-7 heterocycloalkyl,
 - (6) -(CH₂)₀₋₁-C₃₋₇ bicycloalkyl,
 - (7) -(CH₂)₀₋₁-phenyl,
- 35 (8) -(CH₂)₀₋₁-naphthyl, and

(9) $-(CH_2)_{0-1}$ -heteroaryl,

wherein alkyl, alkenyl, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and wherein any methylene (CH₂) in R^8 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R^8 groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

10

15

20

5

each R⁹ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) phenyl,
- (4) heteroaryl,
 - (5) -(CH₂)₀₋₁ heterocycloalkyl, and
 - (6) C₃-6 cycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy, or two R⁹ groups together with the atom to which they are attached form a 4-to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

r is 1 or 2;

s is 0, 1 or 2; and

25 m is 0, 1, 2, 3 or 4.

16. A compound of structural formula IV:

or a pharmaceutically acceptable salt thereof; wherein

R1 is selected from the group consisting of

- 5 (1) hydrogen,
 - (2) amidino,
 - (3) C₁₋₄ alkyliminoyl,
 - (4) C₁₋₁₀ alkyl,
 - (5) $-(CH_2)_n$ -C3-7 cycloalkyl,
- 10 (6) $-(CH_2)_n$ -phenyl,
 - (7) $-(CH_2)_n$ -naphthyl, and

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo;

R² is selected from the group consisting of

- (1) phenyl,
- (2) naphthyl, and
- (3) heteroaryl,
- wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R³;

each R³ is independently selected from the group consisting of

- (1) C_{1-8} alkyl,
- 25 (2) C₂₋₈ alkenyl,
 - (3) $-(CH_2)_n$ -phenyl,
 - (4) $-(CH_2)_n$ -naphthyl,
 - (5) $-(CH_2)_n$ -heteroaryl,
 - (6) $-(CH_2)_nC_2-7$ heterocycloalkyl,
- 30 (7) $-(CH_2)_nC_3-7$ cycloalkyl,
 - (8) halogen,
 - (9) OR^9 ,
 - (10) $-(CH_2)_nC(O)R^9$,
 - (11) - $(CH_2)_nOC(O)R^9$,
- 35 (12) $-(CH_2)_nC(O)OR^9$,

```
-(CH_2)_nC≡N,
              (13)
              (14)
                      NO<sub>2</sub>,
                      -(CH_2)_nN(R^9)_2
              (15)
                      -(CH_2)_nC(O)N(R^9)_2,
              (16)
                      -(CH_2)_nNR^9C(O)R^9,
 5
              (17)
                      -(CH_2)_nNR^9C(O)OR^9,
              (18)
                      -(CH<sub>2</sub>)<sub>n</sub>NR<sup>9</sup>C(O)-heteroaryl,
              (19)
                      -(CH_2)_nNR^9C(O)N(R^9)_2,
              (20)
                      -(CH_2)_nC(O)NR^9N(R^9)_2
              (21)
                      -(CH_2)_nC(O)NR^9NR^9C(O)R^9,
10
              (22)
                      -(CH_2)_nNR^9S(O)_pR^9,
              (23)
                      -(CH_2)_nS(O)_pN(R^9)_2,
              (24)
                      -(CH_2)_nS(O)_pR^9,
              (25)
                      O(CH_2)_nC(O)N(R^9)_2,
              (26)
15
              (27)
                      CF3,
              (28)
                      CH2CF3,
              (29)
                      OCF<sub>3</sub>, and
              (30)
                      OCH2CF3,
```

wherein alkenyl, phenyl, naphthyl, heteroaryl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, and wherein any alkyl, cycloalkyl, heterocycloalkyl, and methylene (CH₂) carbon atom in R^3 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, oxo, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, or two R^3 substituents on the same carbon atom are taken together with the carbon atom to form a cyclopropyl group;

25

20

each R⁴ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) $-(CH_2)_nC_{3-6}$ cycloalkyl,
- 30 (4) $-(CH_2)_n$ -aryl,
 - (5) hydroxy,
 - (6) halogen, and
 - (7) amino;
- 35 R⁵ is independently selected from the group consisting of

20

25

35

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) C₂₋₈ alkenyl,
- (4) C₂₋₈ alkynyl,
- 5 (5) C₁₋₈ alkoxy,
 - (6) -(CH₂)_nC₃-7 cycloalkyl,
 - (7) $-(CH_2)_nC_2-7$ heterocycloalkyl,
 - (8) $-(CH_2)_n$ -phenyl,
 - (9) $-(CH_2)_n$ -naphthyl,
- 10 (10) -(CH₂)_n-heteroaryl, and
 - (11) -(CH₂)_nC₃-7 bicycloalkyl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein any methylene (CH2) in R^5 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl;

R6 is selected from the group consisting of

- (1) hydrogen, and
- (2) C_{1-8} alkyl;

R⁷ is selected from the group consisting of

- (1) $-(CH_2)_nN(R^8)_2$,
- (2) $-(CH_2)_nNR^8C(O)R^8$,
- (3) $-(CH_2)_nNR^8C(O)OR^8$,
- (4) $-(CH_2)_nNR^8C(O)N(R^8)_2$,
- (5) $-(CH_2)_nNR^8S(O)R^8$,
- (6) $-(CH_2)_nNR^8S(O)_2R^8$, and
- 30 (7) $-(CH_2)_nNR^8S(O)_2N(R^8)_2$,

wherein any methylene (CH₂) in R^7 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R^8 substituents together with the carbon, nitrogen or sulfur atom to which they are attached form a 5, 6, or 7-membered saturated or unsaturated nitrogen containing ring optionally substituted with one to three groups independently selected from C_{1-8} alkyl and oxo;

each R8 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- 5 (3) C₂₋₈ alkenyl,
 - (4) $-(CH_2)_nC_3-7$ cycloalkyl,
 - (5) $-(CH_2)_nC_2-7$ heterocycloalkyl,
 - (6) $-(CH_2)_nC_3-7$ bicycloalkyl,
 - (7) $-(CH_2)_n$ -phenyl,
- 10 (8) $-(CH_2)_n$ -naphthyl, and
 - (9) $-(CH_2)_n$ -heteroaryl,

wherein alkyl, alkenyl, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and wherein any methylene (CH₂) in R^8 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R^8 groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;

20

30

15

each R⁹ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) phenyl,
- 25 (4) heteroaryl,
 - (5) -(CH₂)_n heterocycloalkyl, and
 - (6) C3-6 cycloalkyl,

wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C_{1-4} alkyl, hydroxy, and C_{1-4} alkoxy, or two R^9 groups together with the atom to which they are attached form a 4-to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC1-4 alkyl;

```
r is 1 or 2;
```

s is 0, 1 or 2;

35 m is 0, 1, 2, 3, or 4;

p is 0, 1, or 2.

17. The compound of Claim 1 of the following structural formula with the indicated *trans* relative stereochemical configuration:

$$R^{5}$$
 R^{7}
 R^{4}
 R^{4}
 R^{7}
 R^{7}
 R^{7}
 R^{8}
 R^{7}
 R^{8}
 R^{7}
 R^{8}
 R^{8}
 R^{8}
 R^{8}

or a pharmaceutically acceptable salt thereof; wherein

10 R¹ is selected from the group consisting of hydrogen, C₁₋₄ alkyl, and -(CH₂)₀₋₁ phenyl;

each R³ is independently selected from the group consisting of

- (1) C_{1-8} alkyl,
- 15 (2) C₂₋₈ alkenyl,
 - (3) $-(CH_2)_{0-1}$ -phenyl,
 - (4) -(CH₂)₀₋₁-naphthyl,
 - (5) $-(CH_2)_{0-1}$ -heteroaryl,
 - (6) -(CH₂)₀₋₁-C₂-7 heterocycloalkyl,
- 20 (7) $-(CH_2)_{0-1}-C_{3-7}$ cycloalkyl,
 - (8) halogen,
 - (9) OR^9 ,
 - (10) $-(CH_2)_{0-1}-C(O)R^9$,
 - (11) $-(CH_2)_{0-1}-OC(O)R^9$,
- 25 (12) -(CH₂)₀₋₁-C(O)OR⁹,
 - (13) $-(CH_2)_{0-1}-C\equiv N$,
 - (14) NO₂,
 - (15) $-(CH_2)_{0-1}-N(R^9)_{2}$,

```
-(CH_2)_{0-1}-C(O)N(R^9)_{2}
                (16)
                        -(CH_2)_{0-1}-NR^9C(O)R^9,
                (17)
                        -(CH_2)_{0-1}-NR^9C(O)OR^9,
                (18)
                        -(CH<sub>2</sub>)<sub>0-1</sub>NR<sup>9</sup>C(O)-heteroaryl,
                (19)
                        -(CH_2)_{0-1}NR^9C(O)N(R^9)_2,
 5
                (20)
                        -(CH_2)_{0-1}C(O)NR^9N(R^9)_2
                (21)
                        -(CH_2)_{0-1}-C(O)NR^9NR^9C(O)R^9,
                (22)
                        -(CH_2)_{0-1}-NR^9S(O)_{1-2}R^9,
                (23)
                        -(CH_2)_{0-1}-S(O)_{1-2}N(R^9)_{2}
                (24)
                        -(CH_2)_{0-1}-S(O)_{0-2}R^9,
10
                (25)
                (26)
                        O(CH_2)_{0-1}-C(O)N(R^9)_{2},
                (27)
                        CF<sub>3</sub>,
                (28)
                        CH<sub>2</sub>CF<sub>3</sub>,
                        OCF3, and
                (29)
15
                (30)
                        OCH2CF3,
```

wherein alkenyl, phenyl, naphthyl, heteroaryl are unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, and wherein any alkyl, cycloalkyl, heterocycloalkyl, and methylene (CH₂) carbon atom in R^3 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, oxo, C_{1-4} alkyl, trifluoromethyl, and C_{1-4} alkoxy, or two R^3 substituents on the same carbon atom are taken together with the carbon atom to form a cyclopropyl group;

each R4 is independently selected from the group consisting of

- (1) hydrogen,
- 25 (2) C₁₋₈ alkyl,
 - (3) $-(CH_2)_{0-1}-C_{3-6}$ cycloalkyl,
 - (4) $-(CH_2)_{0-1}$ -aryl,
 - (5) hydroxy,
 - (6) halogen, and
- 30 (7) amino;

R⁵ is independently selected from the group consisting of

- (1) hydrogen,
- (2) C₁₋₈ alkyl,
- 35 (3) C₂₋₈ alkenyl,

- (4) C₂₋₈ alkynyl,
- (5) C_{1-8} alkoxy,
- (6) -(CH₂)₀₋₁-C₃₋₇ cycloalkyl,
- (7) $-(CH_2)_{0-1}-C_{2-7}$ heterocycloalkyl,
- (8) $-(CH_2)_{0-1}$ -phenyl,
- (9) $-(CH_2)_{0-1}$ -naphthyl,
- (10) -(CH₂)₀₋₁-heteroaryl, and
- (11) -(CH₂)₀₋₁-C₃₋₇ bicycloalkyl,

wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and alkyl, alkenyl, alkynyl, alkoxy, cycloalky, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein any methylene (CH₂) in R^5 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl;

15

25

30

35

10

R6 is selected from the group consisting of

- (1) hydrogen, and
- (2) C₁₋₈ alkyl;
- 20 R⁷ is selected from the group consisting of
 - (1) $-(CH_2)_{0-3}-N(R_8)_{2}$,
 - (2) $-(CH_2)_{0-3}-NR^8C(O)R^8$,
 - (3) $-(CH_2)_{0-3}-NR^8C(O)OR^8$,
 - (4) $-(CH_2)_{0-3}-NR^8C(O)N(R^8)_{2}$,
 - (5) $-(CH_2)_{0-3}-NR^8S(O)R^8$,
 - (6) $-(CH_2)_{0-3}-NR^8S(O)_2R^8$, and
 - (7) $-(CH_2)_{0-3}-NR^8S(O)_2N(R^8)_2$,

wherein any methylene (CH₂) in R^7 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R^8 substituents together with the carbon, nitrogen or sulfur atom to which they are attached form a 5, 6, or 7-membered saturated or unsaturated nitrogen containing ring optionally substituted with one to three groups independently selected from C_{1-8} alkyl and oxo;

each R^8 is independently selected from the group consisting of

(1) hydrogen,

10

15

20

- (2) C_{1-8} alkyl,
- (3) C₂₋₈ alkenyl,
- (4) -(CH₂)₀₋₁-C₃-7 cycloalkyl,
- (5) $-(CH_2)_{0-1}-C_{2-7}$ heterocycloalkyl,
- (6) -(CH₂)₀₋₁-C₃₋₇ bicycloalkyl,
- (7) $-(CH_2)_{0-1}$ -phenyl,
- (8) -(CH₂)₀₋₁-naphthyl, and
- (9) -(CH₂)₀₋₁-heteroaryl,

wherein alkyl, alkenyl, cycloalkyl, heterocycloalkyl, and bicycloalkyl are unsubstituted or substituted with one to three groups independently selected from R^3 and oxo, and wherein phenyl, naphthyl, and heteroaryl are unsubstituted or substituted with one to three groups independently selected from R^3 , and wherein any methylene (CH₂) in R^8 is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl, or two R^8 groups together with the atom to which they are attached form a 5- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC1-4 alkyl;

each R9 is independently selected from the group consisting of

- (1) hydrogen,
- (2) C_{1-8} alkyl,
- (3) phenyl,
- (4) heteroaryl,
- (5) -(CH₂)₀₋₁ heterocycloalkyl, and
- (6) C3-6 cycloalkyl,
- wherein alkyl, phenyl, heteroaryl, heterocycloalkyl, and cycloalkyl are unsubstituted or substituted with one to three groups independently selected from halogen, C₁₋₄ alkyl, hydroxy, and C₁₋₄ alkoxy, or two R⁹ groups together with the atom to which they are attached form a 4-to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and -NC₁₋₄ alkyl;
- 30 r is 1 or 2;
 - s is 0, 1 or 2; and
 - m is 0, 1, 2, 3 or 4.
 - 18. The compound of Claim 1 selected from the group consisting of:

or a pharmaceutically acceptable salt thereof.

19. The compound of Claim 1 selected from the group consisting of:

21291Y

or a pharmaceutically acceptable salt thereof.

20. The compound of Claim 18 which is:

5

or a pharmaceutically acceptable salt thereof.

21. The compound of Claim 18 which is:

- or a pharmaceutically acceptable salt thereof.
 - 22. The compound of Claim 18 which is:

or a pharmaceutically acceptable salt thereof.

23. The compound of Claim 18 which is:

or a pharmaceutically acceptable salt thereof.

24. The compound of Claim 18 which is:

- or a pharmaceutically acceptable salt thereof.
 - 25. A method for the treatment or prevention of disorders, diseases or conditions responsive to the activation of the melanocortin-4 receptor in a mammal in need

15

20

25

30

thereof which comprises administering to the mammal a therapeutically or prophylactically effective amount of a compound according to Claim 1.

- 26. A method for the treatment or prevention of obesity in a mammal in need thereof which comprises administering to the mammal a therapeutically or prophylactically effective amount of a compound according to Claim 1.
 - 27. A method for the treatment or prevention of diabetes mellitus in a mammal in need thereof comprising administering to the mammal a therapeutically or prophylactically effective amount of a compound according to Claim 1.
 - 28. A method for the treatment or prevention of male or female sexual dysfunction in a mammal in need thereof comprising administering to the mammal a therapeutically or prophylactically effective amount of a compound according to Claim 1.
 - 29. A method for the treatment or prevention of erectile dysfunction in a mammal in need thereof comprising administering to the mammal a therapeutically or prophylactically effective amount of a compound according to Claim 1.
 - 30. A pharmaceutical composition which comprises a compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 31. The pharmaceutical composition of Claim 30 further comprising a second active ingredient selected from the group consisting of an insulin sensitizer, an insulin mimetic, a sulfonylurea, an α-glucosidase inhibitor, a HMG-CoA reductase inhibitor, a serotonergic agent, a β3-adrenoreceptor agonist, a neuropeptide Y1 antagonist, a neuropeptide Y5 antagonist, a pancreatic lipase inhibitor, a cannabinoid CB₁ receptor antagonist or inverse agonist, a melanin-concentrating hormone receptor antagonist, a bombesin receptor subtype 3 agonist, and a ghrelin receptor antagonist.
 - 32. The pharmaceutical composition of Claim 30 further comprising a second active ingredient selected from the group consisting of a type V cyclic-GMP-selective phosphodiesterase inhibitor, an α_2 -adrenergic receptor antagonist, and a dopaminergic agent.

15

20

25

- 33. A method of treating erectile dysfunction in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of the composition of Claim 30.
- 34. A method of treating erectile dysfunction in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of Claim 1 in combination with a type V cyclic-GMP-selective phosphodiesterase inhibitor, an α2-adrenergic receptor antagonist, or a dopaminergic agent.
 - 35. A method of treating diabetes in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of the composition of Claim 30.
 - 36. A method of treating obesity in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of the composition of Claim 30.
 - 37. A method of treating diabetes or obesity in a mammal in need thereof comprising administering to the mammal a therapeutically effective amount of a compound of Claim 1 in combination with an insulin sensitizer, an insulin mimetic, a sulfonylurea, an α-glucosidase inhibitor, a HMG-CoA reductase inhibitor, a serotonergic agent, a β3-adrenoreceptor agonist, a neuropeptide Y1 antagonist, a neuropeptide Y5 antagonist, a pancreatic lipase inhibitor, a cannabinoid CB₁ receptor antagonist or inverse agonist, a melanin-concentrating hormone receptor antagonist, a bombesin receptor subtype 3 agonist, or a ghrelin receptor antagonist.
 - 38. The compound of Claim 1 wherein the pharmaceutically acceptable salt thereof is the hydrochloride salt.
 - 39. The compound of Claim 1 wherein the pharmaceutically acceptable salt thereof is the trifluoroacetic acid salt.
 - 40. The compound of Claim 1 wherein the pharmaceutically acceptable salt thereof is the bis phosphate salt.

- 41. The use of a compound according to Claim 1 for the manufacture of a medicament useful for the treatment of a disease mediated by the melanocortin-4 receptor in a human subject in need thereof.
- The use according to Claim 41 wherein the disease mediated by the melanocortin-4 receptor is selected from the group consisting of obesity, diabetes, male sexual dysfunction and female sexual dysfunction.
- 43. The use according to Claim 42, wherein the male sexual dysfunction is male erectile dysfunction.
 - 44. The use of a compound according to Claim 1 for the manufacture of a medicament useful for the prevention of a disease mediated by the melanocortin-4 receptor in a human subject at risk therefor.
 - 45. The use according to Claim 44 wherein the disease mediated by the melanocortin-4 receptor is selected from the group consisting of obesity, diabetes, male sexual dysfunction and female sexual dysfunction.
- 20 46. The use according to Claim 45, wherein the male sexual dysfunction is male erectile dysfunction.